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An Image Stabilization Technology for Digital Still Camera
Based on Blind Deconvolution

Haruo HATANAKA†a), Member, Shimpei FUKUMOTO†, Haruhiko MURATA†, Nonmembers,
Hiroshi KANO††, Member, and Kunihiro CHIHARA†††, Fellow

SUMMARY In this article, we present a new image-stabilization tech-
nology for still images based on blind deconvolution and introduce it to a
consumer digital still camera. This technology consists of three features:
(1) double-exposure-based PSF detection, (2) efficient image deblurring
filter, and (3) edge-based ringing reduction. Without deteriorating the de-
blurring performance, the new technology allows us to reduce processing
time and ringing artifacts, both of which are common problems in image
deconvolution.
key words: image stabilization, blind deconvolution, deblurr, point spread
function, ringing reduction, digital still camera

1. Introduction

A number of studies on image deconvolution have been
conducted in the past few years [1]. Lately, some of them
have been proposed to address hand-blur in digital still cam-
eras [4], [5], [7], [8], [10]. It is unpractical, however, to ap-
ply them to a consumer digital camera because those image
deconvolution algorithms require precise blur detection and
long processing time and generate ringing.

We have developed a new image stabilization technol-
ogy for a digital still camera based on blind deconvolution.
This new technology reduces both processing time and ring-
ing artifacts. In this article, we will first describe our newly
developed image stabilization algorithm and the image sta-
bilization system in which the algorithm has been imple-
mented. Then, we will present some experimental results of
this algorithm and system.

2. Previous Work

There are two processing steps in blind deconvolution. The
first step is to estimate the point spread function (PSF)
caused by camera motion, equivalent to the blurring kernel.
The second step is to create the deblurred image by using
the PSF.
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2.1 PSF Estimation

Cannon [2], Yitzhaky [3], Tanaka [4], and Moghaddam [5]
proposed PSF-estimation algorithms based on the assump-
tion that blur motions are linear and constant; however, this
assumption may not lead to satisfactory estimates and cor-
rection results because the PSFs caused by actual hand-blur
are often much more complicated. Ayers [6], Fergus [7],
and Shan [8] have also proposed algorithms that assess PSF
with complex shapes, but Ayers’s algorithm is unstable and
Fergus and Shan’s propositions are time-consuming. Be-
sides the algorithms mentioned above, there are other es-
timation algorithms using images with different exposure
times, which are devised by Lim [9] and Yuan [10]. Yet,
Lim’s PSF estimates are inaccurate, and Yuan’s method in-
volves long iterations.

2.2 Image Deblurring

Richardson-Lucy [11], [12] and Wiener’s algorithms [13]
are commonly used as blur restoration techniques. Never-
theless, their algorithms share the same problem of intensi-
fying ringing noise when attempting to improve the deblur-
ring effectiveness. In addition, Richardson-Lucy’s iterative
approach is too time-consuming. Chalkov [14] proposed a
new algorithm to reduce the ringing noise based on the edge
strength of the deblurred image; however, the ringing noise
still remains. Although the method proposed by Yuan [10]
reduces the ringing noise by restoring a residual image from
short- and long-exposure images, the ringing effect escalates
even further if image subjects move while the two images
are being taken.

3. Proposed Algorithm

The application of image deconvolution for image stabiliza-
tion in a digital still camera has three challenges. First,
the blur has to be estimated precisely without using gyro
sensors. Second, the processing time has to be shortened.
Third, the ringing artifacts in the deconvolved image need
to be suppressed without compromising the effectiveness
of deblurring. To solve these problems, we propose a new
algorithm called hand-blur refiner, which consists of three
distinctive functions as follows:
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3.1 Double-Exposure-Based PSF Detector

3.1.1 Basic Algorithm

Image degradation caused by hand-blur is denoted by (1),
where g and f represents the blurred image and blur-free
image, respectively. h represents the blur kernel (PSF) and
n represents the noise. The convolution operator is denoted
by ⊗.

g(x, y) = f (x, y) ⊗ h(x, y) + n (1)

Equation (1) becomes (2) when it comes to the frequency
domain. Here, G, F, H, and N are the Fourier transforms of
g, f , h, and n, respectively.

G(u, v) = F(u, v) · H(u, v) + N (2)

There are several methods to compute the estimate of
h, which is denoted by ĥ, from g and f . The Wiener filter is
optimal in the sense that Mean Square Error (MSE) between
ĥ and h is minimal. The Wiener filter theory defines ĥ as in
(3). Here, α is the regularization parameter and ∗ is the con-
jugate transpose matrix. InvFT denotes the inverse Fourier
transform.

ĥ(x, y) = InvFT

(
G(u, v) · F∗(u, v)

|F(u, v)|2 + α
)

(3)

In a similar way, f̂ , the estimate of f , is calculated from g
and h using (4). Here, β is another regularization parameter.

f̂ (x, y) = InvFT

(
G(u, v) · H∗(u, v)

|H(u, v)|2 + β
)

(4)

Ayers [6] proposed a method for estimating a PSF gen-
erated by a motion blur from a single blurred image (Fig. 1).
In this method, firstly, a random image is set as the initial es-
timate of the deblurred image f ′′. Next, from the deblurred
image f ′′ and the blurred image g, a blur kernel h is calcu-
lated by (3). h is then corrected using (5) and (6). Then, a
deblurred image f is created by using the blurred image g
and the corrected PSF h′′ using (4), and the deblurred im-
age f ′′ is obtained by correcting f using (7) and (8). Here,

Fig. 1 Block diagram of Ayers’ and proposed method.

Imax is a saturated pixel value of the output image. This pro-
cess is repeated until the PSF converges, and after that, the
estimate is finalized.

This method, however, has two drawbacks due to its
iterative optimization procedure: (a) it requires a long pro-
cessing time, and (b) it may be trapped by a local minimum,
which will result in a wrong PSF.

h′(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if h(x, y) > 1
h(x, y), if 0 ≤ h(x, y) ≤ 1
0, if h(x, y) < 0

(5)

h′′(x, y) =
h′(x, y)∑

h′(x, y)
(6)

f ′(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Imax, if f (x, y) > Imax

f (x, y), if 0 ≤ f (x, y) ≤ Imax

0, if f (x, y) < 0
(7)

f ′′(x, y) = f ′(x, y) ·
∑

f (x, y)∑
f ′(x, y)

(8)

3.1.2 Proposed Method

To address these issues, we propose a new method that uses
an image close to an ideal one without hand-blur as the ini-
tial estimate of the deblurred image instead of a random im-
age (Fig. 1). First, two pictures are taken by pressing the
shutter: one is a regular-exposure image, and the other is
a short-exposure image. The exposure time for the latter
is one that reportedly prevents hand-blur nearly perfectly.
Specifically, it is set to 1/[focal length] (35-mm film equiv-
alent). The signal gain of the short-exposure image is in-
creased so that it can be equal to the regular-exposure image
in average luminance. Next, the short-exposure image is set
as the initial estimate of the deblurred image. Then, PSF
h is calculated from the regular-exposure image g (blurred
image) and the short-exposure image f ′′ (initial deblurred
image) using (3). Then the same process as Ayers’ method
is repeated until the PSF converges. This method establishes
an initial estimate of a deblurred image that is approximately
equal to that of an ideal image without blur. Therefore, it re-
sults in an accurate estimate of PSF with fewer repeats and
no local minimum.

However, it takes a long computation time to apply the
above process to the entire image. To solve this problem,
we select small regions with particular characteristics and
estimate a unique PSF for them [15]. Specifically, we se-
lect four small patches of size 64 pixel by 64 pixel with
high-edge strength from the short-exposure image and find
each corresponding patch from the regular-exposure image
by a block-matching method. The following m equations
in (9) can be obtained by selecting m corresponding image
patches.

gi(x, y) = fi(x, y) ⊗ h(x, y) + ni (i = 1, . . . ,m) (9)

Here, fi represents the i-th image patch in the short-exposure
image. gi represents the corresponding image patch in the
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regular-exposure image. h denotes the blur kernel, and ni

denotes noise. The m equations are transformed to the fre-
quency domain and combined to obtain (10).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
G1(u, v)
G2(u, v)
. . .

Gm(u, v)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(u, v)
F2(u, v)
. . .

Fm(u, v)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ H(u, v) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
N1

N2

. . .
Nm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

Here, Gi, Fi, and Ni are the Fourier transforms of
gi, fi, and ni, respectively. When [G1,G2, . . . ,Gm]T ,
[F1, F2, . . . , Fm]T , and [N1,N2, . . . ,Nm]T are substituted
with G, F, and N, respectively, Eq. (10) becomes (2). There-
fore, ĥ, the estimate of the blur kernel h, is obtained by (3).

3.2 Efficient Image Deblurring Filter

If the estimated PSF does not have singular zero points, the
complete deblurred image can be created by applying an in-
verse filter calculated from the blur kernel to the blurred im-
age. However, the inverse filter obtained from the blur ker-
nel is often singular and ill-posed. There are no clear and
simple methods to determine the size and its coefficients of
a deblur kernel (deconvolution filter). To address this issue,
we propose a new algorithm to determine a small and effec-
tive deblur kernel. The algorithm includes the following two
techniques:

3.2.1 Trimming of Deconvolution Filter Coefficients

Firstly, the deconvolution filter calculated by Wiener’s
method is trimmed by invalidating the coefficients which is
less than a threshold using (11).

coeff(x, y) ={
0, if |coeff(x, y)| ≤ threshold

coeff(x, y), otherwise
(11)

A larger threshold results in a smaller filter size; however,
the deblurring becomes less effective. Therefore, we op-
timized the threshold from experimental results shown in
Fig. 2. Later, a pseudo-blurred image is created by apply-
ing a known PSF to a blur-free image, and the blurred im-
age is deblurred while changing the threshold. The peak
signal to noise ratio (PSNR) of the blur-free image and the
deblurred image is then calculated to evaluate the result. A
larger PSNR infers a better result as shown in Fig. 2. The
optimal threshold is determined to be the point where PSNR
begins to decrease rapidly. This technique achieves smaller
deconvolution filter while maintaining PSNR.

3.2.2 Window Function

The second technique is to condense the deconvolution fil-
ter. Generally, applying a window function to a filter sup-
presses the ripples in the filter without altering the frequency
response. Our method proposed in this article applies a
hamming window (12), which is one of the representative

window functions, to the deconvolution filter. Here, w rep-
resents the window function coefficient, d denotes the dis-
tance from the center of the filter, and D is the size of the
filter. Figure 3 shows an example of applying a humming
window to a one-dimensional deconvolution filter, indicat-
ing that the ripples on both ends of the filter are suppressed
by the humming window. Therefore, this method can re-
duce the filter size while maintaining the filter characteristic
(deblurring effectiveness).

w(d) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.54−0.46 cos

(
π (2d+D)

D

)
, if − D

2
≤ d ≤ D

2
0, otherwise

(12)

Fig. 2 Relationship between PSNR and threshold for trimming filter co-
efficients.

Fig. 3 Example of window function.
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Fig. 4 Block diagram of edge-based ringing reduction.

3.3 Edge-Based Ringing Reduction

As stated in “2. Previous Work,” some approaches for
inhibiting ringing noise have been proposed, but they all
present an issue of reducing the deblurring effectiveness. To
solve this problem, we propose a new method to reduce ring-
ing using humans’ visual characteristic without lowering the
deblurring effect. The basic idea is that ringing is perceived
from the low-frequency image areas, while deterioration due
to hand-blur is perceived from the high-frequency image ar-
eas, so if we blend a blurred image and a deconvolved image
using pixel-wise weights based on spatial frequency, we can
effectively removes the ringing. Figure 4 shows the block
diagram of our proposed method.

First, a deblurred image is generated from a blurred
image using methods described earlier. Next, we gener-
ate an edge-extracted image by applying 3 × 3 Prewitt fil-
ter to the blurred image. Then, weighted-addition of the
blurred and deblurred images is carried out on the basis of
the weight of the pixel value of the edge-extracted image us-
ing (13), where r, b, d, and e, represents the restored image,
blurred image, deblurred image, and edge-extracted image
respectively. w represents the weight for addition. emax and
emin denotes the maximum and minimum value of e. This
method effectively removes ringing in the low-contrast area
where ringing is noticeable as well as prevents reduction of
sharpness, which is an indicator of the deblurring effect.

r(x, y) = (1 − w(x, y)) · b(x, y) + w(x, y) · d(x, y)

w(x, y) =
e(x, y) − emin

emax − emin
(13)

4. Experimental Results

We have evaluated the performance of the three methods of
the hand-blur refiner using PC simulation.

4.1 Blur Detection Performance

Tests were conducted for images taken with an exposure

Fig. 5 Experiment of PSF estimation.

Table 1 Comparison between conventional and proposed methods.

time of 1/15 s and a focal length of 105 mm (35-mm equiva-
lent) (Fig. 5). A panel-printed dotted pattern was placed in
front of a resolution chart and 100 pictures of the chart were
taken. Both Ayers’ method and our double-exposure-based
PSF detector were applied to the pictures. A comparison
between the estimated PSFs and the real blur of the dotted
pattern was conducted by evaluating the difference in shape
and size. We defined the difference as D shown in (14),
where h1 and h2 represents the estimated PSF and the real
blur respectively. Dil and Bin denotes the 3 × 3 dilation
and thresholding operation respectively. The PSF estima-
tion was judged as a success if the difference D is 0. Table 1
shows their success ratios and processing times. Besides re-
ducing the processing time by 100 times, we have improved
the success ratio by 40 %.

D =
∑
D=0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if Dil(h′1(x, y)) < h′2(x, y)

or Dil(h′2(x, y)) < h′1(x, y)
0, otherwise , (14)

h′(x, y)1 = Bin(h1(x, y)), h′2(x, y) = Bin(h2(x, y))

4.2 Deconvolution Performance

Blurred images were created by applying 20 different blur
kernels to a blur-free image of the test chart and were decon-
volved with both conventional and proposed deconvolution
filters. Here, 512 pixel by 512 pixel filter size is employed
for the conventional Wiener filter so as to maximize the de-
blurring performance. Proposed method 1 only applies the
trimming technique while proposed method 2 applies both
trimming and window function techniques. The processing
time was measured via PC simulation and the PSNR values
of each restored image and blur-free image pair were calcu-
lated respectively. Larger PSNR indicates better deblurring
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result. The results are shown in Table 2. Compared to the
conventional method, the proposed methods 1 and 2 on aver-
age requires shorter processing times by roughly a factor of
60 and 100, respectively, while maintaining similar PSNR
values.

4.3 Ringing Reduction Performance

Figure 6 shows the experimental procedure to evaluate our

Table 2 Comparison between conventional and proposed methods.

Fig. 6 Experimental procedure for our ringing reduction.

Fig. 7 Example images. (a) Blur-free image. (b) Blurred image. (c)
Restored image without ringing reduction. (d) Restored image with ringing
reduction.

Table 3 PSNR comparison between the two methods with and without
ringing reduction.

ringing reduction method. The blurred images were created
by applying 20 different blur kernels to a blur-free image
of the test chart and were deconvolved with / without the
proposed edge-based ringing reduction.

Figure 7 is an example of these images. We calculated
each PSNR of the restored and the blur-free images. The
results are shown in Table 3. Using our method, the average
PSNR increased by 5 dB.

5. Prototype Camera

5.1 System Configuration

We have implemented the hand-blur refiner into a prototype
digital still camera shown in Fig. 8.

Table 4 and Fig. 9 show the specifications and the block
diagram of the camera system, respectively. Once the shut-
ter button is pressed, both regular- and short-exposure im-
ages are taken and then loaded into the frame memory. After
that, the Digital Signal Processing (DSP) estimates the PSF
using both images, calculates the deconvolution filter coeffi-
cients, and sets up the Finite Impulse Response (FIR) filter.
The FIR filter performs both filtering and deringing on the
regular image and outputs the result to the LCD monitor as

Fig. 8 Prototype camera in which hand-blur refiner is implemented
impimplemented.

Table 4 Specifications of the prototype camera.

Fig. 9 Block diagram of hand-blur refiner.
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well as the memory card.

5.2 Overall Performance

The total performance of image stabilization is evaluated us-
ing a prototype camera in which the hand-blur refiner is im-
plemented. PSNR is not suitable for evaluating the perfor-
mance of image stabilization in practice because the PSNR
is greatly influenced by the accuracy of the image registra-
tion of the blur-free image and the restored image taken at
different time. We proposed an original method for measur-
ing the actual performance of image stabilization. In our
method, the area of the region surrounded by the Modu-
lation Transfer Function (MTF) curve, which indicates the
sharpness of images, serves as an indicator of the degree of
hand-blur. This is because at the time of shooting the larger
the hand blur is, the smaller the area of MTF in the image
will be (Fig. 10). As a subject, we use a circular zone plate
(CZP) that enables us to measure the MTF in all directions.

Evaluation results of the system using this method are
shown in Fig. 11. The filled diamond points indicate the
MTF area values for real blurred images taken by the cam-
era held in hand. The square points indicate the values for
restored images. Each point indicates the averaged MTF
area of 100 images of CZP taken with different exposure
times. The curves are approximated by a quadratic function
to fit these points. From these curves, exposure time TB of
the blurred image and exposure time TR of the restored im-
age are extracted, both of which correspond to the same area
of MTF. Then, a gain of exposure time N [EV] is obtained
using (15). This indicator tells how the deblurring effect can
make the exposure time longer for shooting without hand-
blur. A larger N will obtain a higher deblurring effect.

Fig. 12 Comparison of restored images. (a) Original image with hand-blur. (b) Restored image with
hand-blur refiner. (c) Restored image with conventional method.

N = log2 (TR/TB) (15)

Table 5 shows the results of calculating all points on
the curves using the equation above. The gain of exposure
time by our method was in the range from 0.7 EV to 1.4 EV.
The process time for an 8-M image was 3.1 s on average and

Fig. 10 MTF values for blurred and deblurred images.

Fig. 11 Deblurring results for different exposures time.

Table 5 Total performance of our system.
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Fig. 13 Comparison of restored images. (a) Original image with hand-blur. (b) Restored image with
hand-blur refiner. (c) Restored image with conventional method.

4.9 s at maximum.
Finally, we present a comparison between the restored

images with the hand-blur refiner and a conventional blind
deconvolution method, as shown in Fig. 12 and Fig. 13. The
conventional method is based on an iterative procedure,
known as the deconvblind function in MATLAB.

6. Conclusion

We have developed a new image stabilization technology
based on blind deconvolution and successfully implemented
it in a digital still camera. Evaluation results show that in the
1/125–1/8 s exposure time range we have achieved a 0.7–
1.4 EV exposure time gain as well as reduced the processing
time to 3 s on average.

Although we have proved that our technology can suc-
cessfully perform in an actual digital camera, there is still
room for improvement. One possibility is to remove the
spatially-variant blur. To do that, a scheme that estimates
blur kernels for small regions would be required. Another
potential improvement is to reduce the shooting time for the
second image. To achieve that, it would be effective to use a
live preview image, right before pressing the shutter, instead
of shooting the short-exposure image.

Moreover, the application of this algorithm in conjunc-
tion with optical hand-blur correction system can yield even
better deblurring performance. Furthermore, our technology
is applicable not only to image degradation by hand-blur but
to image degradation by defocusing as well.
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